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Parametric excitation of Alfvén waves by gravitational radiation
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We consider the parametric excitation of Alfvevaves by gravitational radiation propagating on a
Minkowski background, parallel to an external magnetic field. As a starting point, standard ideal magnetohy-
drodynamics equations incorporating the curvature of space-time has been derived. The growth rate of the
Alfvén waves has been calculated, using the normal-mode approach. Various astrophysical applications of our
investigations are discussed, and finally we demonstrate that the coupling coefficients of the interacting modes
fulfill the Manley-Rowe relations.

PACS numbgs): 52.35.Mw, 04.30.Nk, 52.66:h
I. INTRODUCTION Il. RELATIVISTIC MHD EQUATIONS

. . . o In order to obtain general relativistic fluid equations gov-
Interaction of electromagnetic fields with gravitational ra- erning a plasma we begin by considering a system consisting
diation has been studied by several auth&rs19]. Besides a of a charged perfect fluid and an electromagnetic fie.
purely theoretical interest in such phenomena, there are ftroducing the restframe scalar quantities: mass defsity
number of different applications. For example, in astrophys;aiher energy density timesc?) p(m» charge density ),
ics[1-5], in cosmology[ 6], and under laboratory conditions pressurep, and the 4-velocity fieldor fluid velocity) u*
[7—10], where—in the later case—the goal is to find suitable= §y~/d+ and 4-current density“=pqu*, wherer is the
mechanisms to detect gravitational radiation. Furthermoreproloer time and* coordinates in the laboratory frame, this

there are many exa_mples of grav[tational wave in.teractiqrgystem is characterized by having the energy-momentum
that may take place in plasmas. This has been studied duringgorT#7=T4% + T4” . where

the 1980's by a group at the Kazan School of gravitatsee (= "em

for example[1,10,17 and references thergimnd more re- p

cently by Refs{4,12,13, and[14]. . o Tih=| pm+ = |u*u"—pg"”,
In Ref. [12] it was shown that parametric excitation of c

high-frequencyplasma waves by gravitational radiation may
take place. Due to the frequency matching conditions, how TEr = — | EUTE v ZQHYETOE
H (em— T g o7

ever, the plasma must be very thin for that process to be M 4
possible, and the amount of energy transfer is therefore lim- . o o
ited. In the present paper we will thus consider parametri@"dF ., is the electromagnetic field tensor satisfying Max-
excitation of low-frequency magnetohydrodynamit4HD) ~ Well's equations
waves by gravitational waves, which—in contrast—may take Fav _ u

: : : =~ o) ", &)
place in a comparatively dense plasma. The relevance of this
problem for the conversion of gravitational wave energy to FE  +F . +F. . =0 )
the plasma inside supernovas has previously been discussed A
by Ref.[14]. However, due to the complexity of the physical we have adopted the convention that Greek suffixes
situation, a highly idealized model will be studied, where a,, , ... have the range 0,1,2,3 ang, ... have the range
one-dimensional monochromatic ~ gravitational wave—1 2 3 and the metric tensgi“* has the signaturé+ - - -).
superimposed on a flat background metric—propagates The conservation laws of the system follows from that the
through a homogeneous two component plasma. 4-divergence of the energy-momentum tensor vanishes, i.e.,

The organization of the paper is as follows: In Sec. IITuv_ﬂzo' and with the use of Maxwell's equations one gets
idealized MHD equations incorporating the effects of the

gravitational wave are derived, starting from covariant p

two-fluid equations. In Sec. lll parametric excitation of shear (p(mu*),,+ S u*,=0 (€)
Alfvén and magnetosonic waves are considered, the three ¢
wave coupling coefficients are derived, and the growth rate is
found. By adding a phenomenological resistivity to the equa-
tions, the threshold value of the gravitational amplitude is
also calculated. Finally, in Sec. IV, our results are summa-
rized and theoretical considerations like energy conservatiowhere Eq.(3) is obtained by projection along the 4-velocity
properties and the fulfilment of Manley-Rowe relations, asu®. This equation is identified as energy balance in the rest
well as possible applications, are discussed. frame of matter and gives the equation of continyityass

p v v l 14 12
pmt S |ufu :ﬁ(g“ —gu"u ptF" % (4

c
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conservatiopin the nonrelativistic limit. Equatioif4) gives  equations of momentum conservation, where the terms

for =0 the energy balandemodulo of the content of Eq. u*u‘., have been neglected, one finds E®d), which we

(3), i.e., energy balance in the nonrelativistic lifnéind for  refer to as the generalized Ohm's law.

v=1,2,3 momentum balance. Note that if the right-hand side of E€?) is negligible as
Under the conditions of low internal energy the fluid de- compared toF'qu° and FY ul, this equation simply reads

scription of a plasma can be simplified by putting, for eachF'ﬂuM 0 and we can then refer to the single-fluid equations

particle species of the plasma,=mn, wheren is the as the ideal MHD equations. In the following we limit our-

restframe particle density and is the particle mass. Also selves to this case. Note that the MHD equations are not

without these restrictions we may ppit;)=qn, whereqis  independent of Maxwell's and Einstein’s field equations,

the particle charge. Suppose we have a plasma consistirgince we used Maxwell's equations amd”. =0, that fol-

of two species of particles oppositely chargee., q,/q, lows from Einstein’s equations, in deriving them.

=—1), but, in general, with distinct masses. For each spe- We now consider gravitational radiation on a Minkowski

cies we assign a fluid satisfying Eq8) and (4). The fluids  background treating the plasma as a test fluid. Thus, the

are assumed interpenetrating and interacting through thelasma backscattering effect on the gravitational field is lost.

electromagnetic field and, in general, the gravitational fieldThe gravitational radiation is chosen to be weak gravitational

We neglect the effect of particle collisions. If we assumewaves in the transverse traceless gauge propagating k¥ the

nonrelativistic pressure, i.e. such tmahsp/c?, and nonrel- direction. This plane-wave solution of the linearized Einstein

ativistic fluid velocities—in the sense that we may neglectfield equations can be written

quadratic terms in t/in the v#0 components of Eq4)—

then we have, for each of the two fluids, equations for con-ds’=c?dt>—(1—h,)dx?*—(1+h,)dy?+2h,dxdy—dZ?,

servation of particlesor mas$ and momentum in the form

(nu¥).,=0 where h=he'*»"+c.c. and|h|<1 with the wave vector
we [k*]=(w/c,0,0k) satisfying the dispersion relatiok*k,,

=0. In all the following calculations we neglect terms that

are quadratic irh or higher. The metric tensor can thus be

Maxwell’s equations remain the same if we jetbe the total ~ written asg,,,=#,,+h,,, where,, is the metric tensor

current density. of Minkowski space anch,, represents the smallh,,|
Under the conditions that for both specigs- w<w. and <1, fluctuation in the gravitational field.

Ci<c2, this two-fluid description can be cast into a set of The nonzero Christoffel symbols are then calculated to

single-fluid equations. By,~ » we mean that a characteris-

tic frequencyw, can be assigned to the time variations in I'ly=-T%,=T%,=-T%,=-T1;

the dynamical quantitieR21]. We usew.=|q|B/m for the

cyclotron frequencyB is the magnetic-field intensitfwhich =T2,,=T3,=—T3,= Eh

can be obtained from the Lorentz frame components of 2

the electromagnetic field tens@ndC, is the Alfven veloc-

ity, defined byC4=B?/uomn. Under the above conditions 1.

it follows that the two fluid velocities are approximately F102:F201=—1“123:—F213:F312=1“012=§hx,

equal and that the particle densities may be regarded as

exactly equal. Furthermore, we let the equation of state be 0

the one of isothermal compression and assymnéu’. ,| whereh=dh/d¢ and é&=x> - X" o

<|Fi, qnu°|/mnoc|F' gnu|/mn (meaning that the eIectrlc By expanding the covariant derivative, E((_$) becomes

and magnetic forces approximately balance each pther (nu*),,=0 as a result of'#, ,u”"=0 and—noting thag"”

light of this, we obtain the following set of single-fluid equa- = 7*"—h*” to first order, such thag" = — 6" —h''—Eq. (6)

mnuul,=g'p +F ,qnu-.

+

tions (MHD equation$ reads
(nu*).,=0, (5 mnud' ,+G'=—3p;—hip ;+F'j*, 9
(Myy+m)nued', , =g'p +F'j#*, (6)  where we have introduceG'=mnl",, u*u* and m=my,
+meyy.
(2)
Fioyke — i M@P). ~Mw)P2).i R - Next, we pe_rform the' same expansion in Maxwell’s. equa-
u N1 M(1)+ Mgz ' tions and rewrite them in terms of the electromagnetic field
tensor in the fornF#,,. The idea is to express all field tensor
pi=kgTn,. (8) terms in the same form, preferably the one that gives the

most simple expressions. We can sepaifté., = — uoj*
Equationg(5) and(6) are obtained by adding the two-particle into two equations. Setting==0 we obtain a Poisson-like
conservation equations and the two equations of momentutgquation, which we discard—since in the MHD regirife

balance, respectively, and setting the velocities equaen  ~0. Settingu=i, we read off Ampere’s law,
added, lettingj be the total current densitp, the total pres- o _ o o _ _
sure, andT=T )+ T(,). The suffixes ;) and (,) refers to S*F\ j=pmol' —(RPF') + T ;g!"F7,+ T ;g™ F',

the two distinct particle species. By subtracting the two (10
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From Eg.(2), which by symmetry inF#” is equivalent to

FuvotFueutFou,=0, we obtain a number of trivial

identities, a generalized equation f8rB and “Faraday’s
law:”

F30,2_ Foz,s"‘ F23,0: (hxF%_ h+F§),o,
—F301+F% s~ Fl3= —(h, F3+hyFd) ,,

F201—F% o+ Flo=(hy F§+hxF§),o+(hxFé_h+ FS),l-
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je=[dy(h.B;)+3,(h. By—hyB,),
—dx(h4By), = dx(h.By—h,By)],

jg=[di(h;Bx+hyB,),0,—d(h.B;)].

We want to point out that terms of the ordeh, /c in jg
have been neglected, sinE#B is of the orderC, in ideal
MHD theory. Furthermore, note thafF',#cF° =E,, etc.,
which is the origin of some of the terms appearing in the
expressions foQem.coupiing je» @andjg. In addition to Egs.

For notational purposes it is convenient to introduce an ab(ll)—(16) Maxwell's equations produce constrairiesg., for
stract basig%,9,2}. The one-fluid equations and the Max- y.g) however it is easy to verify that these constraints are

well’s equations above can th_en be written_ in a vector réPhropagated by the equations of time evolutigad), (13),
resentation with an algebraic structure identical to th%nd(16).

Euclidean. We define
X=xX+yy+ z2=xK+ x?9+ x32,
V=0,&+v,9+0v,2=u'k+u’y+u®2,
=i &+ iyt iz=itx i+,
E=E,X+E,J+E,2=cF%X+cF%y+cF%2,
B=B,&+B,J+B,2=F2%%+F3,9+F!,2,
7
1

V =08+ 0,9+ 0,2=
X

(Note that these quantities differ to first orderfifirom what
an observer in the lab system would measufene then

IIl. WAVE-WAVE INTERACTIONS

From now on we will consider resonant three-wave inter-
action between gravitational radiation and MHD waves.
Such processes may occur whenever quadratic nonlinear
terms, such as the right-hand sides of Eds)—(16), are
present, and the dispersion relations of the interacting waves
allow for the frequency and wave-vector matching condi-
tions to be fulfilled. For a general review of resonant three-
wave interaction in plasmas, see e.g., R22].

In the absence of any waves we assume to have the con-
figuration of a static homogeneous=n(®), magnetizedB
=B, plasma in Minkowski space. Cartesian coordinates
are chosefix*=(ct,x,y,z)] for a frame in which the veloc-
ity field (and the current-density fieldranishes. The gravi-
tational waves are then inferred as small perturbations to the

obtains the following set of equations governing the plasmaviinkowski background, as in the previous section, and the

mn[d,v+(v-V)v]=jXB—-Vp+g, (11
E+vxB=0, (12)
an+V-(nv)=0, (13
Vp=kgTVn, (149
VXB=puoj+je, (15)
9B+VXE=—jg, (16)

where

g=- G+ gpressuré" gem—coupling
G=-mn (v,—c)(h v, +hyoy),

(Uz_c)(hxvx_thvy)v
1. 9 oo
_§h+(vx—vy)—|—hxvxvy ,
gpressure:_[h+‘9xp+hxayp:hxaxp_h+‘9ypio]v

gem-coupling:[_ hyB,jx—(hy By_ hyByiz,
2h+szx+hXszyi_(h+Bx+h><By)jy]i

MHD waves as the existence of the small fluctuations:
n® v j@ E@ BM) Furthermore, in order to simplify the
algebra, we make the assumptions that the directioB(®f

is everywhere parallel to the direction of propagation of the
gravitational waves, i.eB(®=B)2, and that the gravita-
tional radiation is polarized such thiat =0.

A. Linear calculations

It is instructive to first investigate the linearized theory in

some detail. Linearizing the Eq6l1)—(16) in the variables

hy ,n® v jO EQ) BD) we find that the gravitational
waves do not drive plasma perturbations linearly. This is a
consequence of the direction of propagation of the gravita-
tional wave(parallel to the magnetic fieldhat was chosen.
Similarly the linear plasma perturbations are the ordinary
MHD modes. Fourier analyzing, we obtain the dispersion
relations for the shear Alfvewave

D= w?— Cak3=0, 17
and for the fast and slow magnetosonic wave
Dpn=0"*—w?k?(C5+C}) +kZk?’CECi=0. (18

The constants introduced are the Alfvevelocity C%
=B©2/mn®y,, the thermal velociyCi=kgT/m, and we
have used the notatido=k, X+ k,Z together withk=|k|. In
the next section we will consider superposition of MHD-
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waves, and by expressing all variables in terms of the fluid 0
velocity we can represent the solution as a sum of eigenvec- 1
tors —
e (0,2,0>
@ 6,n® v ( iBOk3, iB(O)kAXkAZ)
1 ; U=
v ve) jW =aa| | 2wamo 2wamo
i0, io, EWD B(©
j@ => | Sk xBO—-—k, xv¥ , 1 -—0,0
£ e | Mo Mo B A 2
B(0) ¢ (1) Bk
B(L) @ - 20
9,80 — g VP " 20p
19 (25
and
whered,=k, VY w,, 0,=k,,BO/w,, anda is a wave- -
mode index. Cskinz
As we intend to study nonlinear wave coupling it is con- w3 —C232,
venient to adopt the normal-mode method of apprd2&, 5
which typically simplifies the algebra in the nonlinear stage o 0 CkmxKmz
of the calculations. We define a normal mode as a linear [ N .04 w2 — C2K2
combination,a,, of the dynamical quantities that to linear v mostmz
order satisfies 1) iB(Ok2
| =amCm| |0,— W'O )
. n
2y +i©,8,=0. (20 E®) mto
B w,BO
The dynamical quantities are now only assumed to have har- m O’n(O)k 0
monic spatial dependence, i.&=ik,. From Eq.(20) the mx
proper linear combinations are k,,B(® B
n(O)ka’ ’n(o)
(3] 26
ap=v{H— — B (21) (26)
kaB(®) where Cr=w02C2k2 I2(w* —k3k2 C2C2
, (=0 INOkqy.
for the Alfven mode, and
O) B. Nonlinear Calculations
A=W ypDy L Kmz 1) . . o
m XUx o Yz The aim of this section is to investigate the lowest-order
m nonlinear influence of the gravitational radiation on the
KmC2x KmyCax MHD modes described above. In particular we are interested
- gy 0T (22 in the threshold valugfor parametric excitation of the

BOg X

B,

gravitational amplitude, and the growth rates of the excited
MHD waves. We will again assume that the wave vectors

for the magnetosonic modes, with the frequency-wave nuMies in axz plane, i.e.k=k,X+k,2 for the MHD waves, but

ber pairs wa,kn,) and (w,,,k,,) satisfying the dispersion
relationsD =0 andD,,=0, respectively. The constagtis
defined asy=ng(w2— C2kn2)/C2Kmywm. With aid of the
eigenvectors

corresponding

= vil)cgkmkaz/(wrzn_
manipulations, write the normal modes as

IS e YA
y [OFN (9(1)A y
(0)
n dD

an= —p M,

W2 CA2, dom

and

relation{"
C2kZ,) we can, after some algebraic

(23

(29)

in contrast to the case of linear wave modes this is a restric-
tion made in order to simplify the algebfa3s].

We consider coherent three-wave interactions, the three
waves being one gravitational wave and two MHD waves,
with the matching conditions

wg=w+ o), (27)
kg:k|+k|| y (28)

wherel andll are indexing the MHD waves. In the nonlin-
ear regime the normal modes no longer satisfy @), but
rather

ataa—’_ i O ([0”taa]n.|.)ka!

For the nonlinear calculation we need the eigenvectors ex-
pressed in terms of the normal modes, and the final lineawhere n.l. denoteffirst-orde) nonlinear terms and the suffix

results are

k, indicates that terms not oscillating @& * vanishes due
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to rapid oscillations. Explicit forms for the right-hand side is C—xCy,
found by using the original expressions for the normal
modes—EqQs(21) or (22)—together with Eqs(11)—(16). and taking the limitk;, ,k,;,—0, we obtain
We let index| denote the magnetosonic wave perturba- )
tion, index 1l the Alfven wave perturbation, and we use a Ci=Cy=— I (35)
complex representatiofi.e., letting f— f+f* for all vari- 1T T T 5%

ables, where the star denotes complex conjygafiaking
use of the linear eigenvecto(5) and ( 26) as approxima- Since dissipation of the waves have not been included in our

tions in the nonlinear right-hand sides, we obtain themodel, the instability threshold value of the gravitational am-

coupled-mode equations plitude found from Eqs(29) and (30) is so far zero. How-
ever, since only weak dissipation is of interest we can take
da+iwa=Cajjhy, (290  such effects into account by simply substitutiag,— (J;
+vy,)a, in the coupled-mode equatiof25], wherey,, is
d@, +iwya,=Cpafhy, (30) the linear damping rate of the mode The most common

damping mechanism of MHD waves is that due to finite
after lengthy but straightforward algebra, where the couplingesistivity. Calculating the linear damping by replacing Eq.

coefficients arg24] (12) with E+vXB= 7j, where 7 is the resistivity, we find
Vo= nki/,uo. Next we introduce thdweakly time depen-
i Noky den) normal-mode amplitudes,A,, defined by a,
Ci=- zmwlwg’ (31) =A,e '“d wherea=1,Il. Substituting these expressions

into Egs.(29) and(30) and taking the damping into account,
we find the general form for the condition of parametric

T e A ~2m2p22, NP (32 9mwmOfwwmﬂﬁﬂ>hmECM%ﬂQcmuzpa,Mwm
0 (= CChkikz) h, is the amplitude of the gravitational wave ahg; is the
threshold value for parametric excitation. In the limit of par-

In deriving the expressions fo€, and C,, we have also allel propagation we find from Eq35) that the threshold
appliedk,~ —k,,; , which follows from the matching condi- valuephthpregduces to 439
;

tion (28) together withC,<c and the dispersion relations.

From Egs.(31) and (32) one may get the incorrect im-
pression that the coupling strength diverges in the I'ﬁ’ﬁt |"F1X|>hthrw >
—0. Thus in order to shed some light on our formulas in the 9 moCa
cold limit, we first renormalize

i1 wZCky,

4%:H: nNwg

(36)

Furthermore, if the gravitational amplitude is well above

al—>C§al, threshold {F\X|>hthr) the general expression for the para-
metric growth rateI’ rom Egs. (29) and (30) is I’
C,—CiC,, ~/C,C5|hy| [22], and the result for the special case of

parallel propagation is
Cn—*ﬁﬂcé, 1
I'~-wglhy|. 3
and then take the IimiC§—>O. The corresponding coupling 2 wg| « @7

coefficients then become . ) N .
It should be pointed out that in addition to the wave interac-

i Now, tions considered above, we have found zero coupling coeffi-
Ci=- 2 % %o (33 cients for a number of cases. To be specific, for the same
X! polarization of the gravitational pump wavé (=0), and
. propagation parallel to the external magnetic field, the fol-
__ r K@i w (34) lowing combinations of MHD wavesannotbe excited in
. 2 now? g the resonant three-wave approximation, since the coupling
coefficient then becomes zernd) two ion-acoustiqor slow
Another special case of particular interest is the limit of par-magnetosonicmodes,(2) one ion-acoustic and one Alfie
allel propagationbut with arbitrary ratioC%/C3), in which ~ wave, and3) two Alfvén waves with the same linear polar-
case the magnetosonic dispersion relation coincides with tha&ation.
of the shear Alfve wave, and the only distinction between  Note that for the case of nonzero coupling considered
the modes is the polarization, which differ by 90 deg. Againabove, the Alfve waves have perpendicular polarizations in
the general coupling coefficie(®1) seems to diverge, since the parallel limit. The coupling between the differently po-
from the magnetosonic dispersion reIatimﬁ—Ciklz~kf, larized modes .then result.s from the quadratic nonlinear terms
whenk2,—0. However, by using another renormalization ~proportional toh,v,% andh, v,y in Eq.(11), and from simi-
lar cross terms in Eq.16) that couple the two different po-
a—aly, larizations throughn,, . The dependence of the results on the
various polarizations for parallel propagation can be physi-
C,—C /x, cally understood as follows: For the MHD waves to gain



8498 M. SERVIN, G. BRODIN, M. BRADLEY, AND M. MARKLUND PRE 62

energy from the gravitational wave, the MHD waves must begrowth ratel'~ 102 s ! at a distance of 1/60 a.u. from the
able to reduce the gravitational wave amplitude. Includingsource, where a process at a closer distance was ruled out by
the source term in the wave equation for the gravitationathe frequency matching conditions combined with the linear
wave, we immediately see that it is only the componBgt  gjispersion relations. In our case the linear dispersion rela-
of the energy-momentum tensor that may affect the gravitagons and matching conditions allow a parametric process
tional wave withh, polarization. However, for the three cjqser 1o the source, and thereby opens up the possibility for
“null cases” listed above, it is trivial to see that, vanishes 4 higher growth rate, although too close to the source the

(within the quadratic MHD approximationand thus the  packground plasma may be too inhomogeneous and too far
gravitational wave is unaffected by the presence of suchom steady state for our calculations to be applicable.

waves. From energy conservatifb] it is thus clear thatthe gy rthermore, excitation of MHD waves may take place in
corresponding coupling must disappear. For perpendiculaf gense plasma, and therefore processes such as supernovas
polarization of the Alfve waves, on the other hand,,  gre of interest, where gravitational wave absorption may take
=mngv,vy—B,By/ue#0, and thus the gravitational ampli- pjace inside the exploding star. In a discussion of possible
tude is affected by such a combination of waves and in aCmechanisms of absorbing gravitational wave energy in su-
cordance with this we have found the coupling to be NONpernovas, Ref[14] has written “Since the effect of accel-
zero. eration by gravitational waves is independent of mass of the
charge, both the ions and the electron respond in an identical
manner, which is not the case for electromagnetic waves.
IV. SUMMARY AND DISCUSSION This means that waves such as Aliveaves, which describe

We have considered parametric excitation of Aifve oscillation of charge neutral plasmas, are ideal. The cou-
waves by gravitational radiation propagating parallel to theling, however, is weak.” At the present stage of under-
external magnetic field. As a starting point, standard ideaftanding it is too early to deduce whether significant gravi-
MHD equations(i.e., without special relativistic effegtsn- ~ tational wave absorption by MHD waves may occur.
corporating the curvature of space time have been derived. fealculations taking into account the effects of a broadband
should be pointed out that the system of E¢®—(8) in gravnatlonal spectrum, pllasmallnhomogenques, etc., must
principle can be used in situations where we have strondj'St be performed. In particular, inhomogeneity scale lengths
deviation from Minkowski space-time, although the condi-With a scale length significantly shorter than the wavelength
tion of nonrelativistic fluid velocities then limits the applica- Of the gravitational mode—such as at the plasma boundary
bility. Focusing on the case where the metric is that of &0f the supernova—may lead to excitation of MHD surface
small amplitude monochromatic gravitational wave superimWaves with a significantly enhanced growth rate as compared
posed on flat space-time, the growth rate for nonlinearhfo the present homogeneous plasma coupling mechanism.
coupled shear Alf/e and fast magnetosonic waves have This is in analogy with parametric excitation scenarios for
been found. high-frequency plasma surface way28], where the surface

In our calculations we have considered a monochromati®vaves may have a considerably higher growth rate than the
gravitational pump wave, which could be produced by binarycorresponding bulk waves, provided the inhomogeneity scale
systems. As seen from E¢87) [or more generally from Egs. length is considerably shorter than th(_e wave[ength of the
(31) and(32) which applies for arbitrary directions of propa- PUmp wave. Such a problem, however, is a project for future
gations[27]], the growth rate is roughly of the orddt ~ WOrK. _ _ _ _ o
~hy wy. Thus the plasma parameters, By, andT do not An interesting question frpm a theoretical point of view is
significantly influence the growth rate, at least not as long a¥/hether the coupling coefficien& andC,, of Egs.(31) and
the assumptions of the derivation are fulfilled. It is not hard(32) satisfy the Manley-Rowe relatiori22]. Generally such
to find a plasma fulfilling these assumptions, e.g., choosingelations follow from an underlaying Hamiltonian structure
ny~ 10" m~3 [28] and considering waves with frequency of the governing equations, and assures that each _of the de-
w=10* rad s, B, may attain any value roughly in the €& prqducts taKes energy from the pump wave in direct
interval 105—1 T for the estimatel' ~h, g to apply, proportion to their respective ffequenues. This means that.
where the limits of the interval comes from the conditionsth€ parametric process can be interpreted quantum mechani-
w< w, and C2<c?, respectively. Furthermore, the condi- cally, i.e., we can think of a three-wave_process as the decay
tion CZ<c? still allows for comparatively high plasma tem- ©f & Pump-wave quanta with energy, into wave quantas

peratures, since it is obviously fulfilled provided the thermal Vit €n€rgylw, andiw, , respectively. An interesting con-
velocities of the particles are much smaller than the speed gcauence 1s tha_t generally a lot of three-wave decay pro-
light. As for the source of gravitational radiation we follow cesses are forbidden from the start by the Manley—Rowe
Ref.[12] and consider a binary system of two equal masse elat|on§(for exam_ple, the decay of a plasmon Into two pho-
m=3M separated by a distance of six Schwarzschild radhons)’ since they imply that we only. get a positive grpwth
r=12Gm/c? emitting gravitational radiation with frequency rate when the pump wave has the highest frequency, in con-

of the orderwg~104 rad/s. By considering two point masses sistence with the quantum pictufg0]. It should be pointed

) ) ; ~ ) out that all well-established basic systems of equations in
separated by a fixed distancethe amplituden, at a dis-  plasma physics such as the ideal MHD equations, the

tance R from the system is estimated to givex  Viasov-Maxwell equations, and the standard multifluid equa-
~Gmr2w§/(2c4R) . Also in the case of Refl12], which tions, all possess the underlaying Hamiltonian structure that
considered parametric excitation of high-frequency plasméeads to fulfillment of the Manley-Rowe relations for three-
waves, the growth rate fulfiled’~h,wy, implying the  wave interaction process¢31]. However, since the theory
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of gravitation differs in important respects from other funda-tion schemgsets in for the growing MHD waves, unless the
mental theories of physics, it is an open question whether thplasma is extremely dense. From a theoretical point of view,
Manley-Rowe relations applies also when one of the interhowever, it is of interest to consider the decrease in the
acting modes is a gravitational wave. To investigate this isgravitational wave amplitude due to the growth of the MHD
sue we consider the energy increase rate of mode |. Multiperturbations. Including the energy-momentum source term

plying Eq.(29) with v¥mK’CZ(w,—kZ,C3)/w ky and using
the eigenvector§25) and (26) we find

oW,

7—w|v, (38)

whereV=2 Im mnywgh,vyvy,/w ] and the magnetosonic
wave energy density is
W, =mgk?(a; — k4 CA) (9D m/ dw) o] 212K 4

(cf. Eq. (20) in Ref. [32]). Similarly, multiplying Eg. (30)

with mngy,,, and applying Eqs(25) and(26) we obtain
o enVs (39

where W, =mnglvy,|? (cf. Eq. (13) in Ref. [32]). Up to

in the wave equation for the gravitational wave, i.e., using
DhW:—ZKTWE—l&TGTM/c“, keeping only the reso-
nantly varying part ofT,, (i.e., the part proportional to
exdi(kqz— wgt)]) and letting hlzzﬁx(t)exp{i(kgz—wgt)]
+c.c., we immediately obtain

~ ohy BxiByii
'ngZK(le)kg:K MU x Uy — e

(40)

which, after using the eigenvectof25) and(26) and multi-
plying with wgﬁ’; can be written

oW

ot (41)

=— wgV,

whereW,= wg|ﬁx|2/2x is the energy density of the gravita-
tional wave[33]. Since the same factd¥ appears in Egs

now, we have treated the gravitational wave as a pump wavé38), (39), and (41), the Manley—Rowe relations are indeed
i.e., we have only considered the initial stage of an instabilityfulfilled (i.e., each mode changes energy in direct proportion
where the energy density of the daughter waves are smalib its frequency, and furthermore we see that the total wave
enough for the influence on the gravitational wave to beenergyW=W,+W,, + Wy is conserved, which follows from
neglected. For a practical purpose this regime may appl¥Egs.(38), (39), and(41) together with the frequency match-

until nonlinear saturation mechanisrfmutside our calcula-

ing condition(27).
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